Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 82 results:
Filters: First Letter Of Title is B  [Clear All Filters]
2023
Fregoso, T. A.; Jaffe, B. E.; Foxgrover, A. C. 2023. Bathymetric change analysis in San Francisco Bay, California, from 1971 to 2020. United States Geological Survey Pacific Coastal and Marine Science Center: Santa Cruz, CA.

This data release provides bathymetric change grids of four geographic areas of San Francisco Bay, California, comparing digital elevation models (DEMs) created from bathymetric data collected in the 1970s and 1980s with DEMs created from bathymetric data collected in the 2010s and 2020. These types of change analyses can provide information on the quantities and patterns of erosion and deposition in San Francisco Bay over the 9 to 47 years between surveys, and they reveals that the bay floor lost about 34 million cubic meters of sediment between the intervening time period. Results from this study can be used to assess how San Francisco Bay has responded to changes in the system such as sea-level rise and variation in sediment supply from the Sacramento-San Joaquin Delta and local tributaries, and supports the creation of a new, system-wide sediment budget. These bathymetric change grids can also provide data to ecosystem managers about the quantities and patterns of sediment volume change in San Francisco Bay to assist in decision-making for a variety of sediment-related issues, including restoration of tidal marshes, exposure of legacy contaminated sediment, and strategies for the beneficial use of dredged sediment.

Fregoso, T. A.; Jaffe, B. E.; Foxgrover, A. C. 2023. Bathymetric change analysis in San Francisco Bay, California, from 1971 to 2020. United States Geological Survey.

This data release provides bathymetric change grids of four geographic areas of San Francisco Bay, California, comparing digital elevation models (DEMs) created from bathymetric data collected in the 1970s and 1980s with DEMs created from bathymetric data collected in the 2010s and 2020. These types of change analyses can provide information on the quantities and patterns of erosion and deposition in San Francisco Bay over the 9 to 47 years between surveys, and they reveals that the bay floor lost about 34 million cubic meters of sediment between the intervening time period. Results from this study can be used to assess how San Francisco Bay has responded to changes in the system such as sea-level rise and variation in sediment supply from the Sacramento-San Joaquin Delta and local tributaries, and supports the creation of a new, system-wide sediment budget. These bathymetric change grids can also provide data to ecosystem managers about the quantities and patterns of sediment volume change in San Francisco Bay to assist in decision-making for a variety of sediment-related issues, including restoration of tidal marshes, exposure of legacy contaminated sediment, and strategies for the beneficial use of dredged sediment.

Plane, E.; Lowe, J.; Miller, G.; Robinson, A.; Crain, C.; Grenier, L. 2023. Baylands Resilience Framework for San Francisco Bay: Wildlife Support. SFEI Contribution No. 1115. San Francisco Estuary Institute: Richmond, CA.
 (10.03 MB)
2022
Mendez, M.; Miller, E.; Liu, J.; Chen, D.; Sutton, R. 2022. Bisphenols in San Francisco Bay: Wastewater, Stormwater, and Margin Sediment Monitoring. SFEI Contribution No. 1093. San Francisco Estuary Institute: Richmond, CA.

Bisphenols are a class of synthetic, mobile, endocrine-disrupting chemicals. Bisphenol A (BPA), the most well-studied bisphenol, is produced and used in vast quantities worldwide—especially in polycarbonate plastics and as a polymer additive. Recently, some manufacturers have begun using alternative bisphenol compounds, such as bisphenol F (BPF) and bisphenol S (BPS). These uses of bisphenols have led to widespread bisphenol detections in the environment and wildlife. The present study examined wastewater effluent in the San Francisco Bay Area and San Francisco Bay sediment samples for 17 bisphenols. The effluent samples were compared to available stormwater runoff data to better understand bisphenol transport, fate, and potential risks to wildlife.

 (1.22 MB)
Lowe, S.; Pearce, S. 2022. Building Capacity of the California Wetland Program Plan to Protect and Restore Vernal Pools. SFEI Contribution No. 1087. San Francisco Estuary Institute: Richmond. CA. p 30.

This report describes the updates to the vernal pool habitat map, the development of the ambient baseline ecological condition survey of vernal pool systems within the Central Valley, and the development and results of the habitat development curve. A fictional project example shows how CRAM and the vernal pool complex CDFs and HDCs can help project proponents and the regulatory agencies think critically about project designs (using CRAM Attributes and Metrics as a standard measure), evaluate project conditions within a regional landscape context, and monitor project performance over time to ensure that project goals are met.

Funding for this report was provided through an agreement with the U.S. Environmental Protection Agency (USEPA).  This report does not necessarily reflect the views and policies of USEPA nor does the mention of trade names or commercial products within this report constitute endorsement or recommendation for use.

 (2.07 MB)
2021
Spotswood, E.; Beller, E. E.; Grossinger, R. M.; Grenier, L.; Heller, N.; Aronson, M. 2021. The biological deserts fallacy: Cities in their landscapes contribute more than we think to regional biodiversity. BioScience 71 (2) . SFEI Contribution No. 1031.

Cities are both embedded within and ecologically linked to their surrounding landscapes. Although urbanization poses a substantial threat to biodiversity, cities also support many species, some of which have larger populations, faster growth rates, and higher productivity in cities than outside of them. Despite this fact, surprisingly little attention has been paid to the potentially beneficial links between cities and their surroundings.

We identify five pathways by which cities can benefit regional ecosystems by releasing species from threats in the larger landscape, increasing regional habitat heterogeneity and genetic diversity, acting as migratory stopovers, preadapting species to climate change, and enhancing public engagement and environmental stewardship. Increasing recognition of these pathways could help cities identify effective strategies for supporting regional biodiversity conservation and could provide a science-based platform for incorporating biodiversity alongside other urban greening goals.

 (781.56 KB)
Panlasigui, S.; Spotswood, E.; Beller, E.; Grossinger, R. 2021. Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities. Sustainability 13 (5).

In response to the widely recognized negative impacts of urbanization on biodiversity, many cities are reimagining urban design to provide better biodiversity support. Some cities have developed urban biodiversity plans, primarily focused on improving biodiversity support and ecosystem function within the built environment through habitat restoration and other types of urban greening projects. The biophilic cities movement seeks to reframe nature as essential infrastructure for cities, seamlessly integrating city and nature to provide abundant, accessible nature for all residents and corresponding health and well-being outcomes. Urban biodiversity planning and biophilic cities have significant synergies in their goals and the means necessary to achieve them. In this paper, we identify three key ways by which the urban biodiversity planning process can support biophilic cities objectives: engaging the local community; identifying science-based, quantitative goals; and setting priorities for action. Urban biodiversity planning provides evidence-based guidance, tools, and techniques needed to design locally appropriate, pragmatic habitat enhancements that support biodiversity, ecological health, and human health and well-being. Developing these multi-functional, multi-benefit strategies that increase the abundance of biodiverse nature in cities has the potential at the same time to deepen and enrich our biophilic experience in daily life.

 (7.42 MB)
2018
Shimabuku, I.; Trowbridge, P.; Sun, J. 2018. Bay 2017 Bay RMP Field Sampling Report. SFEI Contribution No. 849. San Francisco Estuary Institute : Richmond, CA.
 (7.01 MB)
Gilbreath, A.; Pearce, S.; Shimabuku, I.; McKee, L. 2018. Bay Area Green Infrastructure Water Quality Synthesis. SFEI Contribution No. 922. San Francisco Estuary Institute : Richmond, CA.
 (2.31 MB) (1.95 MB)
Beller, E. E.; Spotswood, E.; Robinson, A.; Anderson, M. G.; Higgs, E. S.; Hobbs, R. J.; Suding, K. N.; Zavaleta, E. S.; Grenier, L.; Grossinger, R. M. 2018. Building Ecological Resilience in Highly Modified Landscapes.

Ecological resilience is a powerful heuristic for ecosystem management in the context of rapid environmental change. Significant efforts are underway to improve the resilience of biodiversity and ecological function to extreme events and directional change across all types of landscapes, from intact natural systems to highly modified landscapes such as cities and agricultural regions. However, identifying management strategies likely to promote ecological resilience remains a challenge. In this article, we present seven core dimensions to guide long-term and large-scale resilience planning in highly modified landscapes, with the objective of providing a structure and shared vocabulary for recognizing opportunities and actions likely to increase resilience across the whole landscape. We illustrate application of our approach to landscape-scale ecosystem management through case studies from two highly modified California landscapes, Silicon Valley and the Sacramento–San Joaquin Delta. We propose that resilience-based management is best implemented at large spatial scales and through collaborative, cross-sector partnerships.

 (4.93 MB)
2015
 (31.68 MB)
Sutton, R.; Kucklick, J. 2015. A Broad Scan of Bay Contaminants. San Francisco Estuary Institute: Richmond, CA.
 (1.34 MB)
2006
Cohen, A. N.; Gollasch, S.; Galil, B. S. 2006. Bridging Divides: Maritime Canals as Invasion Corridors. Monographiae Biologicae 83. Kluwer Academic Publishing: Dordrecht, The Netherlands.
2004
Collins, J. N.; Stralberg, D. 2004. Baylands Vegetation Mapping Protocol (Version 1.0). SFEI Contribution No. 304. San Francisco Estuary Institute: Oakland, CA.
 (450.49 KB)
2001
 (429.92 KB)
 (6.46 KB)
 (1.94 MB)
McKee, L. J. .; Wittner, E.; Leatherbarrow, J. E.; Lucas, V.; Grossinger, R. M. 2001. Building a regionally consistent base map for the Bay Area: The National Hydrography Data Set. Abstracts of the 5th Biannual State of the Estuary Conference – San Francisco Estuary: Achievements, trends and the future, pp 108.
1999
Monroe, M.; Olofson, P. R.; Collins, J. N.; Grossinger, R. M.; Haltiner, J.; Wilcox, C. 1999. Baylands Ecosystem Habitat Goals. SFEI Contribution No. 330. U. S. Environmental Protection Agency, San Francisco, Calif./S.F. Bay Regional Water Quality Control Board, Oakland, Calif. p 328.
 (7.11 MB)
 (7.11 MB)
Cohen, A. N. 1999. Breifing Paper on a Monitoring Plan for Nonindigenous Organisms in the San Francisco Bay/Delta Estuary. A report for CALFED and the California Urban Water Agencies. San Francisco Estuary Institute. p Richmond CA.
Cohen, A. N. 1999. Briefing Paper on a Monitoring Plan for Nonindigenous Organisms in the San Francisco Bay/Delta Estuary. SFEI Contribution No. 325. San Francisco Estuary Institute: Richmond CA.
 (283.76 KB)
1998
 (330.72 KB)
 (4.4 KB)
 (23.63 KB)
Collins, J. N. 1998. Bay Area Wetlands Ecosystem Goals Project: Key Baylands Habitats. SFEI Contribution No. 122. San Francisco Estuary Institute.
 (35.49 KB)
Collins, J. N. 1998. Bay Area Wetlands Ecosystem Goals Project: Key Baylands Species. SFEI Contribution No. 121. San Francisco Estuary Institute.
 (25.65 KB)
 (3.12 KB)
 (6.46 KB)
Cohen, A. N. 1998. Biological invasions and opportunities for their regulation on the west coast of the United States. Proc. Eighth Int'l Zebra Mussel and Aquatic Nuisance Species Conf..
 (162.5 KB)
 (240.05 KB)
Cohen, A. N. 1998. Biological invasions in the San Francisco Estuary. In Marine and Aquatic Nonindigenous Species in California: An Assessment of Current Status and Research Needs. Olin, P. G., Cassell, J. L., Eds.. Marine and Aquatic Nonindigenous Species in California: An Assessment of Current Status and Research Needs. California Sea Grant College System, University of California: La Jolla, CA. pp 7-8.
Cohen, A. N. 1998. Biological invasions in the San Francisco Estuary. Eighth International Zebra Mussel and Aquatic Nuisance Species Conference, 14.
Cohen, A. N. 1998. Biological invasions in the San Francisco Estuary. Olin, P. G., Cassell, J. L., Eds.. California Sea Grant College System, University of California, La Jolla CA. pp 7-8.
1994
Flegal, A. R.; Rivera-Duarte, I. 1994. Benthic lead fluxes in San Francisco Bay, California, USA. Geochimica et Cosmochimica Acta 58, 3307-3313 . SFEI Contribution No. 180.
1991
Bruland, K. W.; Anderson, L. A. 1991. Biogeochemistry of arsenic in natural waters: The importance of methylated species. Environmental Science & Technology 25, 420-427 . SFEI Contribution No. 160.
1988
Gunther, A. J. 1988. The Bioavailability of Toxic Contaminants in the San Francisco Bay-Delta: Proceedings of a Two-Day Seminar Series. SFEI Contribution No. 142. San Francisco Bay - Delta Aquatic Habitat Institute, Richmond, CA: Berkeley, CA.