Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 51 results:
Filters: First Letter Of Last Name is K  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
 (928.6 KB)
Kucera, T.; Breauz, A.; Zielinski, W. 2002. Data Collection Protocol Montioring River Otter (Lutra [=Lontra] canadensis). SFEI Contribution No. 241. CA State University Stanislaus, U.S Forest Service, San Francisco Bay Regional Water Quality Control Board: Oakland, CAStanislaus, CA. p 11.
 (58.68 KB)
Kramer, K. S. 1989. Inventory of Current Monitoring Programs in the San Francisco Bay and Delta. SFEI Contribution No. 155. San Francisco Estuary Institute: Richmond, CA. p 39.
Kramer, K. S. 1989. Inventory of Monitoring Programs in the San Francisco Bay and Delta. SFEI Contribution No. 156. AHI: Richmond, CA. p 48.
 (3.81 MB)
 (2.85 MB)
 (2.22 MB)
 (565.23 KB)
 (224.76 KB)
 (1.52 MB)
 (875.49 KB) (345.92 KB)
 (6.55 MB)
 (6.92 MB)
 (545.86 KB)
 (267.06 KB)
 (4.74 MB)
 (6.55 MB)
 (816.23 KB)
 (3.43 MB)
 (1.49 MB)
Kleckner, A.; Sutton, R.; Yee, D.; Gilbreath, A.; Trinh, M. 2023. Water Year 2023 RMP Near-Field Water Sampling and Analysis Plan. SFEI Contribution No. 1142. San Francisco Estuary Institute: Richmond, CA.

This report details plans associated with the pilot near-field water sampling for the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP). The RMP recently reviewed the Status & Trends (S&T) Program and added a pilot effort to quantify contaminants of emerging concern (CECs) in Bay water in areas near (“near-field” of) expected loading pathways during or shortly after storm events and during the dry season. For the first year of the pilot (Water Year 2022), the near-field design included three targeted, near-field stations and four ambient Bay stations. Subsequent years added a fourth near-field station. Samples will be collected at these stations during or shortly after two storm events, and once in the dry season. The analytes that are being measured include bisphenols, organophosphate esters (OPEs), PFAS, and a suite of stormwater CECs.

 (13.36 MB)
Kleckner, A.; Sutton, R.; Yee, D.; Wong, A.; Davis, J.; Salop, P. 2023. 2023 RMP Sediment Cruise Sampling and Analysis Plan. SFEI Contribution No. 1138. San Francisco Estuary Institute: Richmond, CA.

This report details plans associated with the Regional Monitoring Program for Water Quality in the San Francisco Estuary (RMP) deep bay sediment cruise. The RMP, through the Status and Trends monitoring program, conducts routine monitoring of water, sediment and biological tissue. Deep bay stations (water depth lower than 1 foot below MLLW) have been sampled for the Status and Trends sediment program since its inception.  The current monitoring design (reflective of changes made to the Program through the Status and Trends Review process) calls for sampling frequency of deep bay sediment for CECs, PBDEs, and ancillary analytes every five years during the dry season. Every ten years, metals, PAHs, and PCBs will also be sampled. For 2023, sampling operations will entail dry season sample collection at 16 RMP sediment sampling stations for CECs, PBDEs, and ancillary analytes in Central Bay, South Bay, and Lower South Bay.

 (445.99 KB)
Kleckner, A.; Sutton, R.; Yee, D.; Wong, A.; Davis, J.; Salop, P. 2023. 2023 RMP Dry Season Water Cruise Plan. SFEI Contribution No. 1139. San Francisco Estuary Institute: Richmond, CA.

This report details plans associated with the 2023 Regional Monitoring Program for Water Quality in the San Francisco Estuary (RMP) water cruise. The RMP water sampling program was redesigned in 2002 to adopt a randomized sampling design at thirty-one stations in place of the twenty-six base program stations sampled previously. In 2007, the number of stations was decreased to twenty-two stations, and it remains as such for 2023. The analytes for 2023 are based on the Status and Trends (S&T) Review process that started in 2020.

 (3.21 MB)
Kleckner, A.; Davis, J. 2023. 2024 Detailed Workplan and Budget.

In 2024, the Regional Monitoring Program for Water Quality in San Francisco Bay (RMP) is entering its 32nd year of collecting data and communicating information to support water quality management decisions. This Detailed Workplan and Budget describes the activities that will be completed in 2024, the proposed funding levels, and the deliverables for each task. 

    

The planned revenue from RMP fees for 2024 is $4,156k, with additional supplemental fees of $339k from municipal wastewater and $100k from municipal stormwater bringing the total revenue to $4,596k. The expected revenue is $5,216k as shown in Table 1 and Figures 1-2, which is reduced by $200k to account for the lower volume of dredged sediment being disposed of in the Bay, per the Long-Term Management Strategy (LTMS) plan. The $200k figure is a placeholder and the dredger contribution will be updated when we receive the final in-Bay dredge disposal volumes for calendar year 2023 (typically in March of the following year). The majority of the expenses in 2024 (71%) will be for Status and Trends monitoring and special studies (Tasks 6-7). The cost for running the RMP (Tasks 1-5) is $115k higher in 2024 than 2023 and funding allocations have been shifted slightly within each subtask.

 (548.24 KB)
Kleckner, A.; Davis, J. 2024. Multi Year Plan 2024. SFEI Contribution No. 1167. San Francisco Estuary Institute: Richmond, CA.

The purpose of this document is to guide efforts and summarize plans developed within the RMP. The intended audience includes representatives of the many organizations who directly participate in the Program. This document will also be useful for individuals who are not directly involved with the RMP but are interested in an overview of the Program and where it is heading.


The organization of this Multi-Year Plan parallels the RMP planning process (Figure 2). Section 1 presents the long-term management plans of the agencies responsible for managing water quality in the Bay and the overarching management questions that guide the Program. The agencies’ long-term management plans provide the foundation for RMP planning (Figure 2). In order to turn the plans into effective actions, the RMP distills prioritized lists of management questions that need to be answered (Page 8). The prioritized management questions then serve as a roadmap for scientists on the Technical Review Committee, workgroups, and strategy teams to plan and implement scientific studies to address the most urgent information needs. This information sharpens the focus on management actions that will most effectively and efficiently

 (3.3 MB)
 (1.16 MB)
 (84.32 MB)
Klasios, N.; De Frond, H.; Miller, E.; Sedlak, M.; Rochman, C. M. 2021. Microplastics and other anthropogenic particles are prevalent in mussels from San Francisco Bay, and show no correlation with PAHs. Environmental Pollution 271.

Microplastics are an emerging contaminant of high environmental concern due to their widespread distribution and availability to aquatic organisms. Filter-feeding organisms like bivalves have been identified as particularly susceptible to microplastics, and because of this, it has been suggested bivalves could be useful bioindicators of microplastic pollution in ecosystems. We sampled resident mussels and clams from five sites within San Francisco Bay for microplastics and other anthropogenic microparticles. Cages of depurated mussels (denoted transplants) were also deployed at four sites in the Bay for 90 days to investigate temporal uptake of microplastics and microparticles. Because microplastics can sorb PAHs, and thus may act as a source of these chemicals upon ingestion, transplant mussels and resident clams were also analyzed for PAHs. We found anthropogenic microparticles in all samples at all sites, some of which were identified as microplastics. There was no statistical difference between the mean number of microparticles found in resident and transplant species. There were significant site-specific differences among microparticle abundances in the Bay, with the highest abundances observed in the South Bay. No correlation was found between the number of microparticles and the sum concentrations of PAHs, priority PAHs, or any individual PAH, suggesting the chemical concentrations observed reflect broader chemical trends in the Bay rather than direct exposure through microplastic ingestion. The pattern of spatial distribution of microparticles in transplanted mussels matched that of sediment samples from the Bay, suggesting bivalves could be a useful bioindicator of microplastic abundances in sediment, but not surface water.

King, A. 2019. Wind Over San Francisco Bay and the Sacramento-San Joaquin River Delta: Forcing for Hydrodynamic Models. SFEI Contribution No. 937. San Francisco Estuary Institute: Richmond, CA.
 (9.17 MB)
 (17.98 MB)
Kerrigan, J. F.; Engstrom, D. R.; Yee, D.; Sueper, C.; Erickson, P. R.; Grandbois, M.; McNeill, K.; Arnold, W. A. 2015. Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems. PLOS ONE . SFEI Contribution No. 765.

Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are a new class of contaminants of emerging concern, but the relative roles of natural and anthropogenic sources remain uncertain. Polybrominated diphenyl ethers (PBDEs) are used as brominated flame retardants, and they are a potential source of OH-BDEs via oxidative transformations. OH-BDEs are also natural products in marine systems. In this study, OH-BDEs were measured in water and sediment of freshwater and coastal systems along with the anthropogenic wastewater-marker compound triclosan and its photoproduct dioxin, 2,8-dichlorodibenzo-p-dioxin. The 6-OH-BDE 47 congener and its brominated dioxin (1,3,7-tribromodibenzo-p-dioxin) photoproduct were the only OH-BDE and brominated dioxin detected in surface sediments from San Francisco Bay, the anthropogenically impacted coastal site, where levels increased along a north-south gradient. Triclosan, 6-OH-BDE 47, 6-OH-BDE 90, 6-OH-BDE 99, and (only once) 6’-OH-BDE 100 were detected in two sediment cores from San Francisco Bay. The occurrence of 6-OH-BDE 47 and 1,3,7-tribromodibenzo-p-dioxin sediments in Point Reyes National Seashore, a marine system with limited anthropogenic impact, was generally lower than in San Francisco Bay surface sediments. OH-BDEs were not detected in freshwater lakes. The spatial and temporal trends of triclosan, 2,8-dichlorodibenzo-p-dioxin, OH-BDEs, and brominated dioxins observed in this study suggest that the dominant source of OH-BDEs in these systems is likely natural production, but their occurrence may be enhanced in San Francisco Bay by anthropogenic activities.

 (85.5 KB)
 (551.68 KB)
 (431.23 KB) (431.23 KB) (1.37 MB)
Kauhanen, P.; Lowe, S. 2021. Remote Sensing Recommendations for Tidal Wetland Indicators. SFEI Contribution No. 1047. San Francisco Estuary Institute: Richmond. CA. p 31.

This document presents potential products and methods for monitoring a suite of tidal wetland habitat indicators designated for the Montezuma Wetlands Project using remote sensing technology. This document can also serve as a starting place for the Technical Advisory Committee of the San Francisco Estuary Regional Monitoring Program (WRMP) to develop a set of regional protocols for monitoring the same or similar habitat indicators.

 (412.32 KB)
 (25.36 MB)
 (35.93 MB)
Kauhanen, P.; Wu, J.; Hunt, J.; McKee, L. 2018. Green Plan-IT Application Report for the East Bay Corridors Initiative. SFEI Contribution No. 887. San Francisco Estuary Institute: Richmond, CA.
 (1.26 MB)
 (13.76 MB)