The RMP Mercury Strategy

Goal: Collect data to support management decisions

Priority Questions

- Where and when is mercury entering the food web?
- 2. What are the high leverage processes, sources, and pathways?
- 3. What are the best opportunities for management intervention?
- 4. What are the effects of management actions?
- 5. Will total mercury reductions result in reduced food web accumulation?

Reducing Methylmercury Accumulation in the Food Webs of San Francisco Bay and Its Local Watershed

Jay Davis, Don Yee, Letitia Grenier, Lester McKee, Ben Greenfield San Francisco Estuary Institute

Richard Looker, Carrie Austin San Francisco Bay Regional Water Quality Control Board

Mark Marvin-DiPasquale U.S. Geological Survey

Robert Brodberg California Office of Environmental Health Hazard Assessment

Joel Blum University of Michigan

Mercury 101

Potential Intervention Points: Part 1

Potential Intervention Points: Part 2

What have we learned in the last few years?

Small Fish Survey

- Questions 1 and 2
- Few samples below the TMDL target
- Regional variation
- No clear high leverage pathways

Hg Isotope Study

- Questions 2 and 5
- Legacy Hg matters
- Hg from historic mining regions is clearly a concern
- Elemental Hg from gold mining, urban/industrial, and atmosphere is also important

Gehrke et al. 2011. ES&T 45 (4), pp 1264–1270

Total Hg reductions will lower food web Hg

Sport Fish: Striped Bass

Sport Fish: Striped Bass

Statewide Sport Fish Surveys

• SWAMP

 Finding accumulation in even the most remote corners of the state

Atmospheric deposition probably contributes too

Is there anything we can do to reduce food web methylmercury in the next 10-20 years?

Open Bay

Tidal Marsh

Managed Pond

Reservoir

Biosentinels

- Link to beneficial uses
- Integrate over space and time
- Indicate mercury exposure in particular:
 - Habitat or habitats
 - Part of the food web
 - Spatial area
 - Period of time

Open Bay: Possible Knobs

- Elective strategies
 - Slow knobs
 - THg inputs: mining region runoff, urban runoff
 - Fast knobs
 - Nutrient control?
- Non-elective changes
 - Suspended sediment regime
 - Food web shifts
 - Temperature change
 - Sea level rise

Tidal Marsh

Knobs

- Elective strategies
 - Slow knobs
 - THg inputs
 - Fast knobs
 - Restored marsh design and placement
- Non-elective changes
 - Suspended sediment regime
 - Temperature change
 - Food web shifts
 - Sea level rise

Managed Pond

Knobs

- Elective strategies
 - Slow knobs
 - THg inputs
 - Fast knobs
 - Pond design and placement
 - Pond management
- Non-elective changes
 - Temperature change
 - Food web shifts
 - Sea level rise

Reservoir

Knobs

- Elective strategies
 - Slow knobs
 - THg inputs
 - Fast knobs
 - Water management
 - Water chemistry
 - Fishery management
- Non-elective changes
 - Temperature change
 - Food web shifts

Open Bay Managed Pond

Tidal Marsh

Reservoir

How should we monitor tidal marsh restoration projects to support decisionmaking and adaptive management?

Tidal Marsh

RMP – Focus on regional perspective

Monitoring also crucial at local scale

jay@sfei.org www.sfei.org

SF Estuary Endemic Birds and Mammals

	hrch	
Clapper Rail	Rallus longirostris obsoletus	San Francisco Bay
Common Yellowthroat	Geothlypis trichas sinuosa	San Francisco Bay
Song Sparrow	Melospiza melodia samuelis	San Pablo Bay
	M. m. pusillula	San Francisco Bay
	M. m. maxillaris	Suisun Bay
Ornate shrew	Sorex ornatus sinuosus	San Pablo Bay
Wandering shrew	Sorex vagrans halicoetes	South San Francisco Bay
Salt marsh harvest mouse	Reithrodontomys raviventris raviventris	San Francisco Bay
	R. r. halicoetes	San Pablo and Suisun Bays
California vole	Microtus californicus paludicola	San Francisco Bay
	M. c. sanpabloensis	San Pablo Bay

SAN FRANCISCO ESTUARY INSTITUTE