How Slow Can You Go? PCB Lessons from San Leandro Bay

Don Yee Jay Davis, Alicia Gilbreath, Lester McKee

nce upon a time, in a Bay near San Francisco, a TMDL plan was devised to manage the threat posed by PCBs. A model to predict the outcome of the plan was needed, and thus was born...

Whole SF Bay PCB CM 1.0

volatilization but SF Bay isn't **REALLY** uniform inputs **PCBs PCBs** export **PCBs** mixing **PCBs** degradation burial RIP erosion

SF Bay PCB CM 2.0

(Sub-)^mbayments

Big bays have little bays, Into which you can divide 'em, And those units have sub-units, And so, ad infinitum.

then you run out of data, computational power, budget, time

"Priority" Margin Units (PMUs)

- previously "High Leverage Areas"
- a.k.a.
- High
 - Loading
 - Concentrations
 - Biological impact
 - Management action
 - Recovery potential (TBD)?

San Leandro Bay (SLB) PMU

- Highly enclosed
- Near older urban
- Previously studied 1998

(Daum et al. 2000)

SLB PMU PCB Mass Budget

What would SLB PMU PCB Mass Budget Do?

SLB Margin Unit CM 1.0

SLB Tidal Flows (Mm³)

SLB PCB Storm Loads

- Loads ~1kg/yr
- All stays? Or half gone in days?
- Tidal inputs
 - ~1/4x WS load

SLB PCB Mass Budget

25,000,000 Pennies

- SEP funding allowed re-examination of SLB
 - Sampled sediment, fish, water (summer 2016)
 - Many sites in 1998 study revisited
 - PCBs, fish guts, benthos prep

Raw 1998 vs 2016

Going Back In Time?

Déjà Vu All Over Again

Let's do the Time Warp again!

▶ ▶ 3:46 / 3:50

Adjusted 1998 vs 2016

DON Yee

What Happened?

All Models Are Wrong But Some Are Useful G. Box

- Faux/faulty/non-local data
 - Use of open Bay parameter values (mixing depth, water SSC, = overestimated mixing & transport?)
 - Regional load estimates, over-extended locally (= underestimated watershed loads?)
- Oversimplistic "1-box" model
 - SLB greatly differs E vs W (2-box?)
 - May need to consider smaller (sub-)^mbayments

0.5x SSC = End 2x Higher

Lower Model SSC?

- 8.5 mg/L open Bay SSC used
- SLB has less fetch, waves, resuspension?
- Want many areas, long term turbidity/SSC (full range of tidal and climate conditions)
- Limited water grabs in 2016 sampling already suggest slightly lower SSC
 - 900 pg/L avg PCBs in SLB water
 - 125 ng/g avg PCBs in SLB sediment
 - = 7.5 mg/L SSC

Status Quo @ 4x Loads

RMP

Tidal Slough Sources?

SLB Lessons 20/20 Hindsight

- An ounce of prevention is worth 222 tons of cure
- Don't wait until the horse has bolted to close the barn door. tortoise

 Turn off the fact before mopping L Bay dirty sites & watersheds & sloughs

Questions?

