TMDL for PCBs [Mercury] in San Francisco Bay

Presented to SF Bay Fish Project SAG March 8, 2012 Jan O'Hara

*Total Maximum Daily Load

PCBs Problem

- San Francisco Bay impaired by PCBs in fish
- Concentrations increase as you move up the food chain
- Exposure results in cancer risk and other health concerns

Conceptual Understanding

PCB TMDL Development

Fish Target ⇒ 10 ppb

Food web model

PCBs in Bay ⇒ 1 ppb or 160 kg in surface sediments

Mass budget model

TMDL \Rightarrow 10 kg/yr

PCB Concentrations in Fish

Large Mass of PCBs in the Bay due to Past Activities

Compartment		PCB Mass (kg)
Water		3-5
Sediments	Total	18,000-52,000
	Active Layer	500-3,300

In-Bay "PCBs Hot Spots"

Work Completed

- » Oyster Point
- » Redwood City Harbor
- » Emeryville Crescent
- » Moffett field/NASA Ames-Northern Channel
- » Hamilton Army Airbase-Coastal Salt Marsh

Work Not Started

- » Oakland Harbor
- » San Francisco Airport
- » San Leandro Bay
- » Vallejo Ferry Terminal

Work in Progress

- » Alameda Naval Air Station Seaplane Lagoon
- » Hunter's Point Shipyard
- » Yosemite Slough
- » Moffett Field/NASA Ames-Site 25
- » Oakland Army Base
- » Potrero Point
- » Stege Marsh

PCBs Allocations (kg/y)

Source	Current Loads	Allocations
Atmospheric Deposition	net loss	0
Central Valley	11	5
Wastewater (WW)	2.3	2
Stormwater Runoff	20	2
Urban Runoff Treatment by WW		1

TMDL = 10 kg/yr

Implementation-External Sources

Air deposition — No action

Central Valley Reduction from natural attenuation

Wastewater — Maintain current performance

Urban runoff Reductions via source and treatment controls

PCBs in Urban Runoff Drainages

Urban Stormwater Runoff

Pilot projects – what works best?

- » Contain PCB-Caulk
- » Identify PCB problem sites
- » Improve street "dirt mngt" O&M
- » Retrofit on-site treatment
- » Route runoff to Wastewater Plant
- Fish Risk Reduction Project
 - » Addresses risk to fish consumers while we are working on reducing PCBs & Hg in the Bay
 - » Wastewater Plants & Industries participate also

Modeled Recovery of the Bay as a Function of PCBs loads

Mercury Fish Tissue Target = 0.2 ppm

- Relates to human health
- Based on U.S. EPA Fish Tissue Residue Criterion (0.3 ppm)
- Accounts for local fish consumption patterns
- Need to reduce fish tissu concentrations by 40-509

Mercury Sediment Target = 0.2 ppm

- Relates to sources
- Linked to other targets via linkage analysis
- Based on 50% reduction in existing sediment concentrations
- Used to allocate loads

Bird Egg Target = 0.5 ppm

- Relates to wildlife and rare and endangered species
- Based on lowest concentration where adverse effects observed
- May be inadequate to protect some species
 - » Proposed as "interim" target, pending new information
 - » Also expressed narratively
 - » OK because not sole target
- Need to reduce bird egg mercury concentrations by ~50%